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ABSTRACT

An analytical study is presented of the laminar
and turbulent flow fields that result from natural
convection created by cooled or heated arrays of
tubular elements immersed in water. The study is
concerned in particular with the methods used to
create turbulence in the NORDA high-frequency sound
scattering facility and many numerical results are
given that pertain to that application. The report
discusses the initially laminar thermal plume that
rises from a line source of heat in water, the
instability of this plume, the eventual turbulent
form of the plume, plume-plume interactions, and the
swaying of thermal plumes. An appendix gives a
chronological bibliography of works on natural
convection that may be pertinent to understanding
of turbulent flows created in situations analogous
to the NORDA high-frequency scattering facility.
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I. INTRODUCTION
The tasks required in the subiject contract are:
(1) Develop a predictive model for the principal features
of the sound speed fluctuations and flow fields that
result from cooled or heated arrays of tubular elements

immersed in water.

(2) Apply the model to the NORDA high frequency scattering
facility.

(3) Document (1) and (2) in sufficient detail to permit
NORDA personnel to incorporate the results into their
research on high frequency propagation.

The NORDA high frequency scattering facility has been described
by Levenson and Posey [1] and by Posey and Levenson [2,3] in three
papers presented at recent meetings of the Acoustical Society of
America. A fourth paper by Posey, Levenson, Branch, and Carver [4]
discussed the thermal microstructure measurement system (TMMG)
that is used in this facility. The water tank in this facility
{see Fig. 1) is 14 m long by 3.7 m wide by 3.7 m deep. In typical
experiments a 1.5-MHz cw acoustic signal is propagated over a
10 m horizontal path within the tank. @A principal objective has
been to study the effects of random sound speed fields on
high—frequency propagation. To attain the desired random sound
fields the NORDA experimenters have either cooled the water near
the tank’'s top or heated the water near the tank’'s bottom.

In either case natural convection was being used to create an
inhomogeneous temperature field within the water.

A basic theory that the water tank experiments should test

is that devised by Wenzel [5]1. The simplest version of this
theory requires ideally that the thermal fluctuations along and

near the propagation path have statistical properties of a
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Figure 1. Sketch of a typical experimental configuration used
for the study of the propagation of high frequency
sound through turbulence in the NORDA water tank

facility.



homogeneous stationary random process. Also, the test of the
theory would be easier to make if there is no preferred direction
{isotropic turbulence) in the statistical properties of this
field. In such cases there are two important parameters that
enter into Wenzel ‘s theory. One of these is the ratio v2 of the
mean squared deviation of the sound speed c from its average
value cq to the square of the average sound speed. The other
parameter is the correlation length #, defined such that the
product Qci is the line integral over separation distance
{(from zero to infinity) of the spatial autocorrelation function
of the sound speed deviation. Wenzelbassumes that this
correlation length ¢ is large compared with either llko or
(d/ko)llz, where kD (equal to 2nf/co) is the acoustic
wavenumber and d is the propagation distance.

A principal prediction of Wenzel ‘s theory is the phenomenon
of saturation, whereby the second moment of the incoherent
part of the acoustic signal asymptotically varies with propagation
distance in accord with energy conservation notions. The order
of magnitude of the propagation distances that characterize the
transition to the saturation region is of the order of
(vzkgﬁ)—i. Consequently, the situation in the corresponding
NORDA water tank experiments should ideally be such that
the length d of the propagation path is comparable to or
larger than (vzkiﬁ)_l. With the speed of sound in water
taken as 1500 m/s, with the acoustic frequency taken as 1.5-MHz,

and with the propagation distance d taken as 10 m, the acoustic

wavenumber kD is 6300 m—l, its reciprocal llko is 0.16 mm,



while (1:1/#:‘3)1/2 is 0.04 m. Consequently, one desires that

the correlation length % be much larger than 0.04 m and that the

2
product v~ ¢ be at least as large as 1/(k§d), the latter

being 2.5x10"" m.

The experiments reported by Posey and Levenson have confirmed
Wenzel ‘s theory in most particulars, but up to now the "strength®
pf the turbulence has not been sufficient for observation of the
saturation phenomenon. Consequently, the present author has

undertaken to broadly study the principles that govern the generation

of this turbulence.

Although the intended application is to acoustics, the
sub ject matter of this study is natural convection in an
enclosed water tank, either heated from below or cooled from
above. There is an extensive literature on this subject,
much of which pertains indirectly to the tasks of the research
described in this report. Consequently, a bibliography is
included here as Appendix A.

The usual equations taken as a starting point in natural
convection studies are the Boussinesq equations, which constitute
an approximation to the general fluid dynamic equations. A
modern derivation with extensive references to alternative

derivations is given by Gray and Giorgini [é&1.



The general form of the Boussinesq equations adopted in the

present study is as follows:

vV = 0 (1a)
-+
oDY/Dt = —vp*x + u vy + gPpod e, (1b)
&
pc DO/Dt = K voe (1e)

where 3 is the fluid velocity, p is the ambient density, n ié the
viscosity, € is the deviation of the temperature from its ambient
value, g is the acceleration due to gravity, g? is the unit vector
in the vertical direction, B is the coefficient of thermal
expansion, Cp is the specific heat at constant pressure, and K

is the thermal conductivity. The reduced pressure p* is the
actual pressure p plus pg Az, where height Az is measured

relative to any convenient reference height. The operator D/Dt is

+. . .-
a2/t + v'v. For simplicity, o, n, g, B, cp, and K are regarded

as constant.

There are two general fundamental models that can be taken
as a starting point in the analysis of natural convection
phenomena that ocecur in the NORDA water tank:

(1} Horizontal cylinder model. A long horizontal

cylinder immersed in water has a different temperature



than the surrounding water. In the first stage of the
analysis the water environment is regarded as unbounded.

(2 Line source model. The source (or sink) of heat

is not explicitly described but is regarded as extending
along a horizontal line (analogous to the cylinder axis
in the horizontal cylinder model). The source is charac-—
terized by the amount of heat that is being added to the
fluid per unit length of line. If the fluid is being
cooled then the source is actually a heat sink and the
amount of heat béing added per unit length is a negative
number. Here also, in the first stage of the analysis,
the fluid is regarded as unbounded.

The horizontal cylinder model is more specific than the line
source model and is pertinent to the present study because the
devices that have previously been used to heat or cool the NORDA
tank have consisted of either (i) electrically conducting copper
rods bent into zig—zag configurations, (ii) a sequence of parallel
cylindrical probes, each mounted perpendicular to a long bus that
conducts electrical current to the probes, or (iii) cylindrical tubes
carrying liquid nitrogen, the tubes being coiled into a horizontal
configuration resembling a string of continuous zeroes. Near the
surfaces of the rods or tubes at distances somewhat shorter than
any length scale characterizing the zig—zagsvor coils, one would
expect the hozizontal cylinder model to be more appropriate.

At radial distances from a horizontal cylinder that are large
compared with the cylinder ‘s radius R one would expect to get
results fully equivalent to those predicted by a line source

model , provided one makes an appropriate identification for the



heat generated per unit length by the cylinder. The line source
model , moreover, may be an appropriate idealization for a heating
element configuration as a whole, provided one limits predictions
to distances somewhat greater than the element width and provided
the element is substantially longer than it is wide.

In the most recent experiments reported by Posey and Levenson
£31, the heating was caused by the situation (ii) above, each probe
being 14 inch (35.6 cm) long with a net power loss per probe of 1210
watt. There were two intermeshed staggered rows of probes, 346 probes
on each row, the probes being 11 inch or 27.9 cm apart, 72 probes
in all éxtending over a net distance of 10 m. Thus in the region
local to any one particular probe one might use a line source model
with energy input of 3400 watts/m. Alternatively at great distances
above the heating element it might be appropriate to make estimates
using a line source model with energy input of 8700 watts/m.

In either case, horizontal cylinder or line source, one can
regard the convection phenomena governed by the Boussinesq
equations (1} and the corresponding boundary conditions as being
described in terms of dimensionless gquantities.

Horizontal Cylinder Model

If the source of convection is a horizontal cylinder of
radius R whose temperature is SC degrees greater (or lesser if
GC is negative) than ambient, the Boussinesq equations are readily
cast in a dimensionless form. Velocities are expressed in units
of n/pR, distances in units of R, time in units of pRz/u, 9 in
units of OC, and p* in units of uzpr? In this formulation

only two distinct similitude parameters appear; these can be



taken as the Grashof number Gr and the Prandtl number Pr,

defined as
3 2
Gr = gB (2R) Ioclltu/p) (2a)
Pr = u cp/K (2b)

A convenient derived dimensionless group is the Rayleigh number,

defined as

Ra = Gr°Pr (2c)

It is undoubtedly appropriate to have some estimates of the
orders of magnitudes of these parameters at the outset. Taking

values for water appropriate to 20 °C. one has

g = ?.8 m/52

p = 2.07x10° 7!

g = 1.002x10>

kg/m°s
3

p = 998.2 kg/m

c = 4181.6 J/kg°K

K = 0.597 W/m°K

and from these values one calculates

Gr = 161.1 LR in cm]stec in %3 (3a)
Pr = 7.02 (3b)
Ra = 1131 [R in cn]stec in °Ca (3c)



Thus, with representative values of R = 1 cm and 6C = 207 C,
one has
Gr ~ 3220 {(4a)
4
Ra 2~ 2.26=x10 {4h)

The problem of natural convection from a line source has

associated with it a characteristic length L a characteristic

ch?

time tch’ and a characteristic temperature increment ec

h!
these being given by
oc 1/3
Ly, = P - (Sa)
gpa D
WA 2/3
t ., = L 8 (Sb)
ghR| ¥l
Q
ech = ;E_ (5
]

Here @ is the heat added per unit time and per unit length of

line source, n is the viscosity, and B is the coefficient of
volume expansion (increase in volume per unit volume and per unit
temperature increase at constant pressure).

From the above basic characteristic quantities one can

identify a characteristic velocity v and a characteristic

ch

pressure increment péh’ these being given by



173

gpa
vCh = ‘;E— = Lch/tch (&a)
u]
2/3
g e >
pgh = p _;E; = pvch = u/tCh (6D}

With @ taken as 3400 watts/meter (appropriate for near a
single probe), and with g, 8§, cp, u, and o taken as

enumerated following Eq. (2c), one finds

L = 0.0394 cm
ch

tch = 0.154 s

0 = B8.11x10° K
o o =10 K

v = 0.255 cm/s
ch

péh = 0.00648B Pa

Alternatively, with @ taken as B700 watts/m (appropriate for using
the line source model in the description of the flow far above the

heating array, one has

L. = 0.0288 cm
ch
tch = 0.083 s
3
(¢} = 2.08=10 K
ch
v = 0.348 cm/s
ch
péh = 0.0121 Pa

The only distinct dimensionless group that can be associated
with the line source model is the Prandtl number Pr = ucp/K.
There is no intrinsic Grashof number associated with the model;
the literature [7] does, haowever, use a coordinate dependent

Grashof number. Thus, if x denotes distance above the line source,

10



one could speak of a Grashof number equal to (x/Lch) s Or

(6ry = ————z—- (7>
Hd

= 1.63::104 [x in Cm]3 i+ @=3400 W/m

H

4.18x104 [x in Cm]3 1+ G=B700 W/m

Note that Eq. (7) corresponds to Eq. (2a) if 2R is replaced by x,

and if BC is replaced by Q/ucp.

IV. BOUNDARY LAYER NEAR A HORIZONT

Much of the re&ent literature [8, 9, 10, for examplel on
natural convection caused by horizontal cyvlinders has concentrated on
direct numerical integration of the partial differential equations
(1). Unfortunately, the results are all for air (Fr=20.7) and
are oriented toward heat transfer predictions, so an extrapolation
to results applicable for the NORDA experiments i1s not a priori
evident. However, a good approximate theory can be extracted from
a boundary layer model proposed in a seldom cited sequence of
papers by Merk and Prins [111. One adopts in the
vicinity of the cylinder a guasi-—cartesian coordinate system
{see Fig. 2) such that ¥ = R and v = r—R and lets u and v
be the x and y "components" of the fluid velocity. The flow
is assumed steady and laminar and confined (for # between O and,

say, 0.70) to the immediate vicinity of the cylinder. With

11



Figure

o]

a—

Boundary layer model suggested by Merk and Prins for

the analysis of convective flow around a horizontal

cylinder at a different temperature than the surrounding

fluid.
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various plausible assumhtions the Boussinesq equations reduce
to the boundary layer equations
au/3x + dv/3dy = O (Ba})

va2u/ay> + gOf sin & (8b)

udu/a2x  +  vadu/dy

-
uad/ax + vab/ay (v/Pr)Bzelay“ (8c)

with boundary conditions u=0 at x=0; u=0, v=0, 6=OC at vy = O}

and u + 0, 8 + 0 as y +* w. Here v=pn/p is the kinematic

viscasity, which has a value of approximately 10—6 mz/s for water.
If u and © are assumed to vanish outside a boundary lavyer

of thickness 4, varying with %, then the boundary layer equations

above yield the integral relations

2
(d/dx) u- dy = - v(Bu/by)D + gB sin & & dy (Fa)

é

(d/dx) u &6 dy = - (v/Pr)(BO/By)D (9b)

0

Merk and Prins suggest that one assume at the outset that

u and @ vary with vy within the boundary layer as

13



2

u = FGI(y/8L[1 - (y/8)] (10a)
2 .
] = OCEI - {y/é)1 {10b)
where Fi{x) and é(x) are to be determined from Eqs. (9). Then

the substitutions

14407174 /a
§ = R |=—=- L1 + (2/M) ] o« ($) (11a)
Pr Gr
hrd
&0vIGr/7Pr1t/?
F o= - 155 9 (11b)

K [1440(1 + 2/M)1

where ¢ = x/R, M = (7/4)Pr, yield the coupled ordinary differential

equations
2 2 .
o W d¥/dé = [M+2]Ja sin & — [M+11¥ (12a)
2 2 .
Y o« do/dé = —-[M+2la"sin & + [M+21V¥ (12b)

Subsequent introduction of a function #(#), such that

1/(d&/d#) (13a)

R
I

e
It

tdé/ds (13b)

reduces the above system to just one differential equation

14



$F 87 = (ME2)Isin £ — #($°) 71 (14)

with boundary conditions # = 0 and ¢ =1 at 6 = 0.

The integration of the above equation, although not trivial,
can be effected with the aid of a digital computer. Results are
listed in Table 1 for a Prandtl number of 7.0. Insertion
of the representative numbers cited earlier in the present

report into Egs. (11) vyields

8/R

Ie

0.52¢0 (15a)

-

F ~ [3.15x10 ° m/s1¥ (15b)

The peak value of u in the boundary layer, according to Eq. (10a},
is (4/27)F, so since ¥ increases to a value of the order of 1.5,
the peak velocity in the vicinity of the cylinder is of the order
of 7:<10_4 m/s. The boundary layer separation point should be
roughly where ¥ attains its maximum value, so one should not

attach too much significance to the listings in the table

for values of % greater than 1300.

15



¢ 180¢/m 3 (4) a(¢) ¥(9)
0.0 000.0 0.00000 1.00000 0.00000
0.1 5.7 0.09998 1.00048 0.09994
0.2 11.5 0.19987 1.00192 0.19949
0.3 17.2 0.29957 1.00502 0.29808
0.4 74/ 0.39898 1.00781 0.39589
0.5 28.6 0.49800 1.01217 0.49201
0.6 34,3 0.59654 1.01763 0.58620
0.7 40.1 0.69450 1.02418 0.67810
0.8 45.8 0.79178 1.03187 0.76733
0.9 51.6 0.88829 1.04075 0.85351
1.0 57.3 0.98392 1.05089 0.93627
1.1 63.0 1.07857 1.06238 1.01524
1.2 68.8 1.17214 1.07533 1.09003
1.3 74.5 1.26453 1.08984 1.16028
1.4 80.2 1.35562 1.10608 1.22561
1.5 85.9 1.44531 1.12421 1.28563
1.6 91.7 1.53348 1.14443 1.33995
1.7 97.4 1.62003 1.16701 1.38819
1.8 103.1 1.70482 1.19224 1.42993
1.9 108.9 1.78774 1.22053 1.46473
2.0 114.6 1.86864 1.25233 1.49213
2. 120.3 1.94739 1.28827 1.51163
2.2 126.1 2.02383 1.32913 1.52267
28 53 131.8 2.09781 1.37596 1.52461
2.4 137.5 2.16912 1.43018 1.51668
2.5 143.2 2.23757 1.49376 1.49795
2.6 149.0 2.30293 1.56956 1.467214
2.7 154.7 2.36490 1.66195 1.42297
2.8 160.4 2.42314 1.77791 1.36291
2.9 166.2 2.47722 1.92967 1.28375
3.0 171.9 2.52656 2.14101 1.18008
3.1 177.6 2.57029 2.46677 1.04196
Table 1. Tabulation of dimensionless boundary layer parameters

for natural convection around'a horizontal cylinder at
a different temperature than the surrounding fluid.
Calculation is for a Prandtl number.of 7.0 Here # is
angle in radians, 180#/w is angle in degrees, ¢ (8)

is the solution of the nonlinear differential equation,
x(#) corresponds to boundary layer thickness, Wis)
corresponds to the poeak tangential fluid velocity in

the boundary lavyer.

16



Analogous results can be extracted from the relations

[derived from Eqs. (10)1

I

u dy (1/12) Fé ; u 8dy = (1/30)6F¢

u2 dy = (1/105) F26 ' (16)

concerning the rates at which mass, thermal energy, and

momentum are being transported in the thermal plume.

When the fluid is locally heated, a thermal plume rises
from the heated reqgion because of natural convections if 1t
is locally cooled, then the thermal plume descends. In what
follows, the terminology refers to a rising plume but in
actuality the analysis is equally applicable to a descending
plume.

The thermal plume rising from a heated horizontal cylinder
or a line source may be laminar for some distance above the
source but must eventually become instable. There is
possibly some intermediate range of heights (see Fig. 3) where
the flow profile has a characteristic shape such that the wvertical
velocity u depends on horizontal distance y from the plume’s

center according to a relation of the generic form

17



Figure 3. Sketch of thermal plume and coordinates used in

the development of a similarity solution.
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u = uU(z) F(y/Ly) (17)

where F(n) is some characteristic function, independent of height,
which can be normalized such that F{(0) = 1. The quantities U(z)
and Ly(z), representing peak vertical velocity in the plume and the
plume’'s half width, will, however, vary with height z. The

premise is that, given appropriate choices for U(z) and Ly(z),

the same function F(n) applies for each height z in this range.

Similarly, one can paostulate that

<
Il

Viz) G(y/Ly) (18a)
0 = T(z) H(y/Ly) (18b)

for the transverse velocity and the temperature deviation.
Moreover, it seems plausible that the plume is still fairly thin
in this height range, so boundary layer equations analogous to

Egs. (8) can be used, i.e.

du/dz + 2dv/idy = 0 (1%2a)
2 2 :
udu/dz + vadu/dy = v 3 u/dy + gB o . (1%9b)
2 2
uad/2z + vde/dy = (w/Pr)a2 o/2y (19c)

19



with the boundary conditions
2u/dy = 0 20/3y = 0O; v = 03 at y = 0 (20a)

u + 03 8 + O3 as y + (20b)

A corollary of the above boundary layer equations and boundary

conditions is that

0

(d/dz) uedy = 0O (21)

so the functions U(z), T(z), and Ly(z) that appear in Egs. (17)

and (18) must satisfy the requirement

where K is a constant independent of =z.
It is readily demonstrated that the assumptions (17) and

(18) are consistent with the boundary layer equations and the

2
constraint (22) only if Ly 1s proportional to (z—zo)“ls, while

U must be proportional to (z—zo)lls, V must be proportional

2/5, and T must be proportional to (2_26)—¢/5_ Here

to (z-z )
(a]
z, is some constant and may be negative. Without loss of

generality one can take these proportionality constants to be

such that

20



2/5, 1/5 175

u = @ 2581 ez (23a)
v o= (gpK) 1752/ (z—zD)—zls (23b)
T = K4/5v_2/5(gﬁ)_1/5(z—zn)”3/5 (23c)
L, = v/ S gy 13 (z—zn)Z/5 (23d)

Here the constant K must be such that
% %0
u &6 dy = K F(n} Hin) dn (24)
[a] =]
the left side being presﬁmed to be known at the outset.
The mass conservation equation is satisfied if one introduces

a function ¢ and sets

F = dé#/dn = &’ (25a)

G = (2/9)nd" — (3/5)¢ (25b)

The remaining two boundary layer equations then yield
H = (1/5)('}')2 - (3/9)% & — & 77 (26a)
—(3/5)Y(#H) © = (1/PriH""’ (2&b)

Since F=1, BG=0, and H'=0 at n=0, one has =0 and #'=1 at n=0.

The second of the above two equations consequently integrates to
- (3/9)% = (L1/Pr)H’ (27)

and one consequently obtains the fourth—-order nonlinear

21



differential .equation

f SURCRCRCRRETS (3/5)(1 + Pr)ed" " + {(1/5)Y¢ %" + (9/25)Pr *2*’.

2
~ (3/25)Pr #(%#°)"

= 0 (28)
with the boundary conditions
¢ = 03 4 = 1; ' = 03 at n =0 (29a)
¢ + O as n + o« (29b)

Once such a function #(n) is found, the constant K can be

determined fram

~ o
wuedy = K[# [(1/5 ()% (3/5)#% "—¢" "3 dn
8 o
-
= k[ ten?+ (a3 an (30)
(=]

The differential equation (2B) can be integrated numerically,
starting from n = 0, given some choice &~ (0). If #°°°(0) is
systematically varied one eventually finds one such choice that
leads to a sclution that satisfies the upper boupdary condition.
The results of such a lengthy computation are tabulated in
Table 2 for Pr = 7.0. For small n the results are consistent with

the power series expressions
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n o] F H G
0.0 0.0000 1.0000 1.0049 -0.0000
0.2 0.1989 . 9842 . 9400 -0.0406
0.4 0.3917 .9396 .7736 -0.0847
0.6 0.5288 . 8740 .5530 -0.1075
0.8 0.6123 . 7969 .3584 -0.1124
1.0 0.6879 .7161 .2220 -0.1263
1.2 0.7554 .6370 .1336 -0.1475
1.4 0.8153 .5627 .0797 -0.1741
1.6 0.8680 .4946 .0482 -0.2043
1.8 0.9143 .4333 .0300 -0.2366
2.0 0.9548 .3786 .0194 -0.2700
2.2 0.9901 . 3301 .0132 -0.3036
2.4 1.0209 .2874 .0092 -0.3366
2.6 1.0477 . 2499 .0067 -0.3687
2.8 1.0710 L2171 .0049 -0.3995
3.0 1.0912 .1884 .0036 -0.4287
3.2 1.1087 .1633 .0027 -0.4562
3.4 1.1239 .1414 .0020 -0.4820
3.6 1.1370 .12214 .0015 -0.5059
3.8 1.1484 .1059 L0011 -0.5281
4,0 1.1583 . 0915 .0008 -0.5485
4,72 1.1668 L0791 .0006 -0.5672
4.4 1.1741 .0682 .0005 -0.5843
4.6 1.1804 .0589 .0003 -0.5999
4.8 1.1859 . 0507 .0003 -0.6141
5.0 1.1906 . 0437 .0002 -0.6270
5.2 1.1947 .0376 . 0001 -0.6386
5.4 1.1981 .0323 .0001 -0,6491
5.6 1.2011 .0278 . 0001 -0.6585
5.8 1.2037 .0238 .0001 -0.6670
6.0 1.2059 .0204 .0000 -0.6746
6.2 1.2078 .0175 . 0000 -0.6814
6.4 1.2094 .0149 .0000 -0.6875

Table 2. Tabulation of similarity solution for a buoyantly
rising thermal plume. Calculation is for a Prandtl
number of 7.0. The dimensionless quantity n

caorresponds to horizontal distance ecross the plume
relative to its center; F corresponds to the profile

of vertical velocity; 6 corresponds to the profile

of horizontal velocity (negative velues imply motion
away from the center); H corresponds to the temperature
profile; #(n) is the solution of the differential

equation and is the integral of F(w.
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# = n-0.1382 n° + 0.0335 n° (31a)
2 4 =
F = 1 - 0.4024n° + 0.1677% 1)
_ 2 4
H = 1.0049 - 1.6903n° + 1.7191n (31c)
3 5 -
6 = -0.2000n - 0.0805n + O.0470n (31d)

In the limit of large n the function + approaches a constant

value of §w=1.2173 and the approach is such that

—(3/5) % n
¢+ & - (5/3)(1.698/%) e “ (32a)
—(3/5)%
F + 1.698 e £ (32b)
—(3/3)¢% n
G + —(3/S)# + (3/5)In + 5/(3% )11.698 e * (32c)

The temperature profile, according to Eqs. (27) and (32a), must

asymptotically satisfy

—(3/5) % n
d{ln H}/dn = -(3/5)Pr (¢ - (5/3)(1.698/%) e 2

s0

—(3/5)Pr§wh - —(3/5)§mh
H +» De exp|—(5/3)Pr 1.698B ¢ e (33a)

o>
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and eventually

—(3/5)Pr # n
H - De ® (33b)

a cnﬁparison of the expression (3333 with the numerical results
yields D = 1.07x104 o [The asymptotic formula (33a) is
probably more accurate thanlfﬁé Table 2 values for H{(n) when n
is greater than 2 because of the rnund—aff errars in&urred when
Eg. (27) is used to calculate H(n) .1

For the line source model, the energy (@ generated per unit
length:and per unit time (see Seé. 111) is identified witﬁ
reference to the thermal plume béundary layer equations (19)

as being

G - 3

Q = 2 pcp u 6 dy (34a)

a]

o

pCpK HF dn (34b)

il
]

(=)

where the second expression follows from Eq. (24). For a Prandtl
number of 7.0 the integral appearing'in'thié latter exﬁression

is computed to be

L]
J/.H Fdn = 0.326 ‘ T (35)
1 . | o .

Consequently, one has (with Fr = 7.0)
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this matching are that (1) the rate of heat transport (integral
over y of u®) and (2) the rate of momentum transport (in£egral
over y of u2) be the same for both solutions at the poin£
where the boundary layer separates from the cylinder. Since the
separation point is not known and since the cited integrals are
somewhat insensitive to its precise value, the numbers corresponding
to & = w/2 (90°) are used in the cylinder boundary lavyer
splution. The z origin is taken at the center of the cylinder.

The calculations discussed here are carried out for a Frandtl
number of 7.0. Consequently, the integral expressions in Eqs. (16),
with substitution from Egs. (11) and with values of o«(n/2) and

Y{n/2) taken from Table 1, vield

21
2 2 3 .
/ﬂu“ dy = 0.0230 (\.\"/R)(Er')&/4 (38a)

O

Ll
J/ﬁu 6dy = 0.1095 ve, (Gr) 174 (38b)

The integral on the right side of (24) is found to be 0.326, and

since 0.1095/0.326 is 0.336, aone obtains

K = 0.336 vGC U.':‘vr‘)l/4 (39)
Alternatively, since K is given in terms of & by Eq. (36}, this

vields

@ = 0.219 uc 6 Gr) 174 (40)
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The Nusselt number for natural convective heat transfer from

the horizontal cylinder can be regarded as defined by the relation

Nu = Q/OCKﬂ (41)

Consequently, with the Prandtl number taken to be 7.0, Eq. ((40)

vields the heat transfer relation

Nu = 0.49 (Gr)1/4 = 0.30 (Ra)ll4 42)

which is in order of magnitude agreement with the empirical relation

Nu = 0.525 (Ra) /% (43)

commonly cited in the literature [12].

¥

The second matching criterion can be expressed

o0

0.0230(vZ/R) (Br) /% = (gprdy 3TV B2 A7 sz dn
(=]
00
e ]
= (.336/8)3/5(Gr)3/4(v‘/R)(—zD/R)4/5J~F2 dn
()

s0 ane has

0.0230 (8/.336)3/5

O
./. FZ dn
o

The integral in the denominator here is 0.628, so one consequently

/5

(—z /R)4 (44)
o

obtains

z = =0.173 R (43)
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The apparent origin point of the thermal plume is therefore 0.173
radii below the center of the cylinder. If one is interested in
the character of the plume only for z greater than, say, 5 radii,
the value of z_ can be approximated by O.

Again, it must be pointed out that the numerical values in

the above equations are for a Prandtl number of 7.0.

VII. TRANSITION TO TURBULENCE

A single buoyant plume such as is described by equations given
in previous sections of this report should eventually become® instable
and then become turbulent.

The earliest data in this regard of which the present author
is aware appears in a 1967 paper by Forstrom and Sparrow [131.
Their experiments were with a horizontal wire heated by an
electrical current; the heat input . per unit length and per
unit time in such an experiment is easily measured by simply
measuring the voltage drop across a segment of length d and
also measuring the current through the wire; & is then simply
voltage drop times current divided by segment length d.

Forstrom and Sparrow interpreted their data in terms of a
horizontal line source madel and used what they called a modified
Grashof number, which turns out to be the same as the x-dependent
Grashof number defined in the present report’s Eq. (7). Recall
that x there corresponds to height above the line source.

The onset of transition to turbulence is charactérized by
turbulent bursts and begins when (Gr)x = 5x108. The piume appears

to be fully turbulent if (Gr) exceeds 5x109.

29



The criteria just méntioned should also depend on the
Prandtl number; Faorstrom and Sparrow’'s experiments were carried
put in air, for which Prx~0.7, so the results are not necessarily
applicable for water, for which Prx~7.0. Nevertheless, i1t may be
of interest to see what these criteria, taken at face value, would
imply for the NORDA experiments. Using the numbers listed in

Sec. III, one finds:

i) Onset of turbulence [(Br)x = 5x108]:
x = 31 cm if @ = 3400 W/m
x = 23 cm if @ = 8700 W/m
ii) Fully turbulent [(Gr)x = 5x109]:
x = 67 cm if B = 3400 W/m
X = 49 cm if @ = 8700 W/m

A second paper which pertains to this question is that
published in 1971 by Pera and Gebhart [14]1. Their discussion

uses a different definition [15] of a Grashof number, which

we abbreviate here as (Br)PB , the definition being such that
3
ghx (Ae)x
(Gr) =L e = (46)
PG (u/p)2
with
(Ae)y = 0(x,0) — 6({x,«)
= 08(x,0) (47)

representing the plume’'s nominal center temperature (relative to
the ambient temperature) at height % above the line source.
Given that the plume is on the borderline of being instable one

can take the latter quantity to be as given by Eq. (18Bb), only
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with x now denoting the vertical distance rather than L
The function H is evaluated with its argument set to zero; the
corresponding value for when Pr=7.0 is H(0) = 1.004%9 from

Eq- (31lc). Consequently, with K given by (36), and with T{x)
given by Eq. (23c), one has a reinterpretation of the FPera and.
Gebhart Grashof number as being (for a Prandtl number of 7.0)

(1.'.53)4/5 H(0) [(Gr)x]4/5

(Gr)PB

= 1.41 [(Br)x]4/5 (48)

Most of Pera and Gebhart’'s computations and experimental
results are for air, for which Pr = 0.7, but their Figs. 2, 3,
and 4 indicate no radical dependence on Prandtl number in
regard to stability criteria. @A rough inference is that if
Gr {air) is some critical value of a Grashof number for air,

PG

then the corresponding critical value Gr (water) is between

FG
1 and 10 times GrPB(air), larger but no more than 10 times
larger. They report a "critical" Grashof number GFPB of 10.34

for air, so it is a good conclusion that any plume in water

must be intrinsically instable whenever Gr exceeds 103.4, or

FG

with reference to Eq. (48), whenever (Gr)w exceeds z215. This

is considerably smaller than Forstrom and Sparrox's value of
SEIOB, but one could possibly explain this with the supposition
that a very small instability triggered at a critical value of x
may not be noticeable until the plume has risen some additional
distance. Recall that (Gr)x is proportional to x3, sO a lob—fold
increase in (Br)X only corresponds to a 100—fold increase in .

For the planning of experiments, Forstrom and Sparrow’'s number

should be the more useful.
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A plume rising from a line source must eventually become
fully turbulent. In such a height regime the mean flow and
mean temperature are more strongly affected by Reynolds’
stresses than viscous stresses and more strongly affected by
heat transport by turbulent diffusion than direct thermal
conduction. Consequently, the plume boundary layer equations

(1?2) must be modified to 141

du/dz + 2dv/3dy = 0 {4%a)

i

uu/2z + vau/dy (1/p3d7/2y + gB © (49b)

uab/dz + v206/3y = (1/pcp)3x/3y (49c)

where here the quantities u, v, 6, correspond to time averaged
quantities. Apart from a multiplicative factor of p, the

Reynolds’ stress 7 is presumed to depend only on height =

and on the local profile of u versus y at that height. Similarly,
apart from a multiplicative factor of pcp, the mean thermal heat
flux X (which is associated with turbulent convection) is presumed
to depend only on height z and on the local profiles of u and ¢ with

the transverse coardinate y. It is still so that the quantity

o
2 = pcp/ udé dy (50)
= ok
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must be independent of z and is identifiable as the net
heat per unit source length and per unit time that is being carried
upward by the plume. |

A plausible assumption that can be made concerning the So}ution
of Egs. (49) 1s that at sufficiently large heights the mean plume
profile must eventually attain a self similar form, such as is
described by Egqs. (18), with Ly being some function of z.
A related assumption is that the shear stress 7 must scale
with guz, such that 7/pU2 is a function only of y/Ly.
Existence of a solution having such properties requires [171 that
U be independent of z, that GLY be a function only of y/Ly, and
dLyfdz be independent of z. Hence with a suitable choice of the z-
origin, one can set Ly=z/a, where a is any convenient dimensionless
constant. The conservation of mass equation (4%a) is automatically

satisfied 1f one introduces a function #(n), where

n = ay/;.v_ {(Sia)

uly,z) = Cgb@/oc 31275ke" = v __K#° (51b)
Ya g ﬂCp Ch\

viy,z) = [gﬁ@/pcp]“3a'1mrn - #1 (51c)

Here K and a are dimensionless constants that can.be selected to

make the analysis less cumbersome; the quantity Yeh is as defined

in Eq. (&a).

When the similitude principle is applied to the other two

boundary lavyer equations one discovers that
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2/3,.2

¥ = p[gBQ/pcp] (K™/7a) AT (52a)
_ 2/3, 2 N 2

0 = [gBQ/pcp] (K™ /gBz) Ae = (echLCh/z)h Ae (52b)

x = @kZa ! A, ' (52c)

where AT, A and Ax are dimensionless functions of n; the

6!

quantities LC and ec are as defined in Eqs. (Sa) and (35c).

h h

Insertion of the abave expressions into the boundary layer
equations (49b) and (49c) consequently leads to the two ordinary

differential equations

- [+ Ae] = Ax {S3b)

the latter of which immediately integrates to

- % A = A ' . {(53b ")

because symmetry imposes the boundary conditions #(0) = O and

Ax(O) = 0. A comparable insertion into Eq. (30) yields the relation

1 = (Ks/a) A, dn (34)

which can be used for the evaluation of the constant K, given some
choice for the value of & (0).

The Prandtl model of turbulence requires that
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A = cta & 71¢° 71| (535a)

A, = = SA' L i (555)
A = cae! i

where c is a dimensionless constant that must be determined from
experiment. [A determination described further below vyields
c = 0.065.1 For a hot rising plume, given positive y, #°° and A

e
should be negative.

The most convenient choice for the parameter .a is such
2
that c:"a3 = 1/2. Such a choice along with the identificatinns

in Eqs. (55) allows one to reexpress Egs. (53) in the form

(for positive n)

°°¢°°" — ##°° = A (S6a)

é"ﬁé — 2%A = 0 (36b)

Boundary conditions at n=0 are that both ¢ and ¢’ are

zero. The quantity & ° should be finite at n=0. Given the
latitude in the selection of K, one is free to choose the solution
to be such that ﬁe(O) = 1. Such conditions cause the soclution

of Egqs. (5&8) to be such that, for small positive n,

§ = Cn— (4715)v2n>'2 + (1718)Cn”7
- .. (57a)
¢ -
A, = 1 - (2v2/3En~"2 + [(2/9C% + (8/745)1In>

= & o o (57b)
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where C is a constant that remains to be determined.

The quantities u and & must vanish at large distances from
the center of the plume; a study of Egs. (56) indicates that this
can be achieved if #° and %'’ simultaneously vanish at some
point. I1f such a point is denocted by hL, then the differential
equations and the requisite continuity conditions are identically
satisfied beyond hL with ¢ set to a constant value of i(hL).

There is, however, only one such value of the constant C for

which this is possible; Schmidt’‘s calculations [161 yield

cC = 1.1398 ’ (58a)

hL ~ 2.0 (58b)
i(hL) = 0.9682 (58c)

The plume therefore stops abruptly at n=hL and has a finite
width. A brief table of values extracted from Schmidt’'s paper is
given in Table 3.

The experiments of Rouse, Yih, and Humphreys [171 yield

w(0,z) = 1.80 (gam/pcp)1’3 (59)

so a comparison with Eqs. (51b), (54), and (57a) requires

K = 1.80/C = 1.80/1.1398 = 1.58 (60a)

a = 2(1.80/1.1398)° # A dn = 4.93 (60h)
o

c = (1/2anH 2 - o.0e5 (60C)
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'S

]

# L N Ay
0. 00000 1.1398- 1. 00000
0.1128 1.1202 0.9665
0.2215 1.0582 0. 90664
0.3154 0.9888 0.8311
0.41995 0,71698 0.75703
0.507 0.8369 0.47354
0.5866 0. 7607 0.59068
0.65775 0.66914 0.51964
0.7204 0.58575 0.4324
0.7749 0.5032 0.387
0.8205 0.4246 0.294
0.8604 0.3525 0.2365
0.8915 0.2812 0.1818
0.9166 0.2'85 0.1364
0.9356 0.1622 0.0983
0.9495 0.1139 0.0678
0.9584 0.0733 0.04946
0.9639 0.0415 0.0233
0.94667 0.0178 0. 009
0.94678 0.0048 0. 0025
0.9682 0. 0000 0. 0000

Tabulation of dimensionless bhoundary layer parameters
for a turbulent plume, buoyantly risiné under the
influence of gravity. Calculation applies to two-—
dimensional plume, such as would be generated by a
line source of heat, and is for a Prandtl number of
7.0. The parameter n is ay/z and is pEDpurtinnal

to transverse distance y; # 1s the solution of an
ordinary differential equation, defined such that

$’ corresponds to vertical flow velocity; Ae

carresponds to temperature.
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where the numerical integration in Eq. (&60b) is effected using the
values from Table 3.

Since the temperature deviation drops to 1/2 its maximum
value at n ~ 0.7, the plume width can be taken to be (2)(0.7)a_12,
or with the numbers derived above, 0.28 times the height z above
the heat element. Thus at a representative height of 2 m, the
plume width should be roughly 0.57 m. The heuristic mixing
length theory analyses that lead to Eqs. (53) suggest that the
correlation length ¢ that appears in Sec. I of the present
report should be roughly cz, or 0.06 times the height z above
the heating element (%= 12 cm when z = 2 m).

Given that @ is 8700 m/s, along with the numbers cited in Sec.

I11, one finds that the above analysis leads to

6 = 1.5/=z (61)
max

for the temperature in the center of the plume (in degrees centigrade
relative to the nominal temperature of the water when z is measured

in metres). Since the speed of sound in water increases by roughly

2

4.0 m/s when the temperature increases by 1 c'C, the ratio v
of the mean squared deviation of the sound speed from its average
value to the square of the average sound speed should be roughly of

the order of

M

Y ~ (4.0/1500)26 &
max

~ (1.6x10 2y /22 (62)

with all numerical values understood to be reckoned in MES units.

Given that ¢ =~ 0.06z, one consequently has
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(1079 /2 (63)

<
©
14

IX. PLUME-PLUME INTERACTIONS

One of the features that shows up in interferometer photographs
{181 of multiple plumes from parallel line sources lying in the same
horizontal plane is that the separate plumes tend to draw themselves
taogether. The tentative explanation of this phenomena is that
the upward moving fluid in any given plume drifts sidewards because
of the asymptotic horizontal velocity of the other plumes. The
bending can be worked out starting with this premise and tracing

the trajectory of a fluid particle nominally in the center of the

plume, according to the equation

v due to other plumes

dy/dz (64)

u due to that pfame

Using the equations developed in Section V of the present

report, one has in the case of two plumes

o370 (zrE) (1,217

dy/dz = (63)
(gﬁkﬁ)l/5 (2_20)3/5

For the horizontal isothermal cylinder model this gives [see

Egqs. (39) and (45)1]

1.38 35 .
dy/dz = 77173 [z/R + 0.1731] (L6)
(Br)
Thus, in the limit of large z, one has
3.44 (z/R)z/5
y o - R (&7
e /%

for the sideways drift y of one of the plumes. With z/R = 10
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and GBr = 3000, for example, one would have y/R = 1.2, while for

z/R = 100 one would have y/R = 3, and for z/R = 1000 one would

have y/R = 7.

X. GCWAYING OF PLUMES

A curious feature of the thermistor data from experiments in
the NORDA water tank facility is that there are often relatively
long "quiet" periods in which the temperature does not fluctuate
at all at the measurement point. Although there is no clear-cut
unambiguous explanation for this phenomenon, a possibility suggested
by a study of the recent archival literature on natural con;ection
is the "swaying of thermal plumes."

The "swaying” could cause the "quiet” periods if the tur-—
bulent plume arising from the heating element were confined to a
relatively narraow region of horizontal extent. Part of the time
the sensor may lie in the plume; part of the time the plume may
have swaved off to one side of the sensorj; part of the time it
may have swayed off to the other side.

Present understanding of the physics of plume swaying is
unfortunately relatively meagre, but something may perhaps be
learned from a careful study of previous literature on this sub-
ject. With such a purpose, the relevant pDrtiDn§ of the prin-—
cipal papers are paraphrased and discussed below.

A. Forstrom and Sparrow (19467)

This early paper [13] summarizes experiments on the buoyant

plume above a heated horizontal wire. The experiments were

done in air with a wire 0.040 inch in diameter. In discussing
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the design aspects of their experiments, the authors state that
"prior experience suggests that external free convection flows
are readily affected by fluid motions and temperature fluctua-
tions in the surroundings”, so they were careful to use an iso—
lated, windowless room, free of drafts. Nevertheless, they
found that in any such room, the measured temperatures varied
appreciably with time. Subsequent visualization of the flow
field with a Schlieren system revealed that the plume was
swaying to and fro in a plane perpendicular to the axis of the
wire. The authors concluded from this that even in the ideal
rooms available, there were sufficient air currents to affect
the plume. To eliminate such spurious air currents, they sur-—
rounded the plume with an isolation enclosure. This enclo-
sure was a rectangular box 44-in high with 32 x 24-in horizontal
dimensions, the 32-in length being parallel to the heated wire.
The wire itself was centrally located 12-in above the bottom of
the enclosure. Individual experiment runs were distinguished
by the amount of heat @ dissipated per unit time and per unit
length of wire. This was measured by determination of the time
average of the product of voltage drop across the wire times
current through the wire, divided by length of the wire.

The temperature above the heated wire was measured by a
thermocouple. The heating rate @ ranged from 0.26‘to~5.2 W/ft.
The temperature field was measured at elevations ranging from
174-in to 15-in above the center of the heated wire. The authors’
enclosure appreciably reduced the swaying of the plume, but some
swaying nevertheless persisted. These swaving motions were

regarded as a characteristic of natural convection plumes. The
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flow was always fully lahinar for all operating conditions at
elevations up to 6 in above the wire. At higher elevations,
depending on heating rate, the flow would sometimes be turbulent.
The swaying of the plume was manifested by a periodic oscillation

in the temperature at a fixed point above the wire where the flow
was laminar. The period was of the order of I minute. Turbulence
was distinguished from laminar flow by the fact that the temperature
fluctuations were erratic rather than smoothly periodic.

The authors do not give much information regarding the tur-—
bulent bursts that they report as characterizing height regimes
where the flow starts to become turbulent. They state that
measurements of temperature fluctuations versus time during such
circumstances could not be performed because the available in-—
strumentation did not possess the requisite rapid response
characteristics, but the amplitudes of the fluctuations were
much higher than those of thé temperature fluctuations in the
laminar regime. There is no mention of long quiet periods
between turbulent bursts; instead there are remarks to the effect
that the plume becomes wider when the flow becomes turbulent.

B. Aiba and Seki (1976)

This [19]1 was the first systematic study of the swaying
motion of plumes. The heating elements were stribs of stainless
steel foil, each sample being 40 cm long, the width being either
1, 2, or 3 cm. Like Forstrom and Sparrow, these authors also
measured the rate 8@ of heat supplied per unit length of strip.
Temperature was measured at a point 3 to 4 cm vertically above the

center of the strip. The horizontal heating strip was immersed
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in transformer oil or spindle oil (the authors vaguely state that
the Prandtl number varied from 80 to 160 for their experiments).
The authors’® primary discovery was the manner in which the
plume swaying frequency varied with the height H of the free
surface of the oil above the heating strip. Their data is fairly

well explained by the empirical formula
2 =5
f d°/n = 1.37=+10 (Gr d/H) {68)

where f is the swaying frequency of the plume, d is the width of
the heating strip, v is the kinematic viscosity, H is distance
of free surface above the heating strip, and Gr is a Grashof
number. The latter is not explicitly defined in the paper but

is here evidently

(Er)d = (d/v)3 gBQ/pcp . (69)
which is just the same as that defined in Eq. (7)), only with x
replaced by d. If one plugs (69) into (68) one finds that the
swaying frequency f is actually independent of the heating foil’'s
width d, which makes sense because H is so much larger than d,
so the swaying frequency is about the same as if the source were
a wire of indeterminate small diameter. What is.more inter—
esting about the empirical results is that the swaying frequency
varies as the inverse square root of the fluid depth H. The
deeper the fluid, the longer the period of the plume swaying.
It may be somewhat risky, however, to assume that these results

apply to the NORDA experiments, because the Prandtl number of
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water is only 35 to 104 of that of the fluids used by Aiba and
Seki. The authors suggest (but give nothing in the way of
theory) that the plume sw;ying might be a "self-excited oscil-
lation" related to a periodical variation of local heat transtfer

on the surface.

C. Eichhorn and Vedhanayagam (1982)

This [20]1 is a combined experimental and theoretical study
of plume swaying in a rectangqular tank partially filled with
water. As in the experiments of Forstrom and Sparrow, these
experiments used a long cylindrical wire carrying electric current
to serve as a line source of heat (@ watts per unit length of wirel;
the new feature of the experiments was that the lateral extent
of the tank (distance between plexiglas endplates) was varied in
addition to @ and the depth h of the wire below the water surface.
This lateral extent L corresponded to the line source length.

The flow visualization techniques in this paper were
relatively novel. The outer steel sheath of the heater element
acted as a dye-producing element for thymol-blue indicator which
made the thermal plume visible to the eye and to the camera.
Goodyear Fliolite VT particles were first used to visualize the
flow field; but the latter experiments used ground-up mother of
pearl as it allowed the authors to visualize both the plume and
the ambient motion and to determine the swaying frequency with a
stop watch. They could illuminate either horiznntai or vertical
thin cross sections of the flow field with collimated light from
a slide projector.

The photographs of horizontal cross sections of the plume

(such as would be seen looking down from above with only the por-
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tion of the plume at a given set height visible) showed a wavy
appearance reminiscent of the vibration modes of a vibrating
string with free ends. (My inspection of the photographs in the
paper doesn’'t lead to any simple boundary condition at the
end plates. Neither the plume d?splacement nor the plume slope
seem to vanish. What may possibly be the case is that the ave-
rage plume displacement from the line directly above the source
averages out to be zero.?

When the plume is swaying back and forth at constant fre-
guency the plume shape tends to remain fixed - just as the
shape of a vibrating string remains fixed when the string is
vibrating in a-given natural mode. Plume shapes are distin-—
guished by the number of nodes. The authors state'that Yin
steady state oscillation, an integral number of'nodes must exist
between the end plates, and the end plates must coincide with an
anti-—node, to satisfy continuity in the amb;ent fluid." Their
plume visualization studies indicate that the number of such
nodes is a function only of the parameter ghslvz, where h is the
immersion depth of the heat source. Interestingly, the number of
nodes is independent of the rate 8@ of heat added per unit length
of line source. The more shallow the immersion, the greater the
number of nodes. The change from 2 to 3 nodes occurs when the
parameter ghsl\.\2 decreases from above to below 1650; the change
from 3 to 4 nodes occurs when this parameter decreases from above
to below 1350; the change from 7 to 10 nodes occurs when the
parameter i1s of the order of 6460 to &690.

For the NORDA experiments, the length h is of the order of
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3.9 m, while v is of the order of 1.004x10_6 m2/s, s0

g ho/ve » 4.2«10%% (70)

The exceptionally large value of this number compared to the
values cited in the preceding paragraph would seem to imply that
there should aonly be 2 nodes in any swaying plume that may exist
in the NORDA experiments. (Apparently, two is the minimum number
of nodes that one can have, in order that "the end plates coincide
with anti-nodes.")

With a given observed plume shape function one can associate
a wavelength A. This wavélength is twice the distance betweeﬁ
nodes; the line source length L should be an integral number of
half wavelengths. With such a definition, the authors present
a relatively crude theory that states among other things that
the swaying frequency depends, among other things, on the wave-
length X. In particular, they predict, by using a novel and
samewhat unorthodox interpretation of Rayleigh’'s principle, that

the swaying frequency is given by

3 -0.36

f = (ge/w 3 parr®F pr (gh~/sv2y 11730

times (function of h/A)
(71)
where they offer two alternate expressions for the function of

h/7x that appears here. These are

h/a 172
function of h/7Aa = 0.7247 & (72a)
1 + (A/2wh)™
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and

h/7x hae

function of h/x = 0.4678 = o (72b}
1 + (3/72) (A/2nh)

In the above formulas the various symbols have their usual mea-—
nings: £ is the thermal conductivity, Pr is the Prandtl number
(viscosity times specific heat divided by thermal conductivity),
h is depth of line source below free surface, v is kinematic
viscosity, B is coefficient of thermal expansion.

The agreement of theory and experiment is pretty good when
the first version to the function of h/A is used in Eq. (71).
Regardless of whether or not the theory is correct, however, it
does not begin to purport to explain the variation of the number
of nodes with the parameter gh3/v2.

Applying the above formulas to the NORDA experiments is
intrinsically questionable, but a rough interpretation might take
A= 10 m, h = 3.5 m, @ = 8700 W/m. The function given by
Eq. (72a) is then 0.39; this in turn when inserted into Eq. (71)
vields a frequency of 1.35x10—4 Hz, which corresponds to a
period of 2 hours.

D. Urakawa, Morioka, and Kiyota {(1983)

This somewhat parochial paper [21]1 refers only to previous
Japanese work. The authors apparently were unaware of the worlk
discussed above by Eichhorn and Vedhanayagam, but the general
experimental setup is similar to that of those authors. Urakawa
and coworkers used spindle oil rather than water because spindle

il has a much higher viscosity than water, and this feature evi-—

dently causes the swaying period to be much longer. There was
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a horizontal line source a distance H below the free surface;
the length L of the line source was varied with movable end
plates (partition plates within a larger tank).

The heat rate @ per unit length of line source was measured
and the time variation of the temperature with a thermocouple at
some unspecified point above the heat source. The plume vibra-
tions were visualized by shining light up from below the bottom
of the tank. Between the fluorescent light source and the trans-
parent bottom of the tank was a milk white plate with many paral-
lel black lines painted on it. The black line below the plume
would have an apparent displaced position because of the refrac—
tion of the light in passing through the heated fluid with a
smaller density and different index of refraction. The swaying
motion of the plume was therefore displayed in the swaying of
the image of the black line.

One general observation of Urakawa et al. that conflicts
with the results reported by Eichhorn and Vedhanayagam is that
the pDSitiDn‘Df the nodes move and the ripples in the swaving
plume meander. The plume motion is not generally periodic.
However, it was evidently always possible to associate a definite
wavalength with the ripple in the plume; the nodes might mean-—
der but the distance between them stayed fixed. This wavelength
depended on @ and the immersion depth h, but was apparently inde-
pendent of the line source length L (distance between the movable
partitions). They found that they could stop the meandering if
they adjusted L such that it was an integral number of half wave-—

lengths.
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Another curious feature suggested by these experiments is
that the line formed by the intersection of the plume with a
vertical plane perpendicular to the line source has an intri-
cate motion. Such lines were visualized by putting aluminum
powder in the oil. Short term exposures of photos taken end on
of the tank revealed the streak lines of the paths of the
powder particles. The longer streaklines evidently marked where
the flow velocity was highest and this was apparently identified
as the position of the plume. A succession of such photographs
then gave the time evolution of a given vertical slice of the
plume. The authors’ sketches derived in this manner show a line
moving in a very erratic manner, sometimes bending downwards,
then bending back upwards, sometimes actually becoming discon-—
nected at an intermediate point between the line source and
the free surface. 0On the two sides of this erratically moving
plume were many (say, four to six) vortices distinguished by
closed streak lines, these vortices having no discernible
regularity.

The authors’ measurements apparently indicated that there was
more than one possibility for the wavelength A, given a fixed choice
for the immersion depth h and the heating rate B. The swaying period
can be regarded as a function of A, h, and @, with the wavelength
in turn being one of a relatively small number of functions of
h and B. For fixed 8 and h, the period increases with the wavelength.
For fixed @, the wavelength increases with the water depth and,
for fixed depth and wavelength, the period varies as the reciprocal
of the cube root of the heat rate G.

The authors do not give anything in the way of theory to explain
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their experimental resulfs. Also, an extrapolation to water is
hampered because the authors do not give their results in terms of
dimensionless groups of parameters. The paper is stimulating but
not rigorously written.

One possible explanation of the swaying of plumes in the
NORDA water tank is that the the plume is being moved bodily by
one of the sloshing modes (gravity induced oscillations marked by
wave motion on the surface) of the tank as a whole. It is a
straightforward exercise in fluid mechanics to derive an
expression for the natural sloshing frequencies of a rectanqular
tank with a free surface. The general result is somewhat
cumbersome, so it is omitted here. The pertinent prediction
is that the lowest natural sloshing frequency is of the order of
(2ﬂ)—1(g/H)1/2, where H is a characteristic dimension for the tank.
Typically, this would correspond to periods of less than 20 s,
although longer intervals of quiet are observed in the NORDA

facility.

XI. CONCLUDING REMARKS

Turbulent natural convection, like all other aspects of turbulence, is
a subject that is imperfectly understood. Nevertheless, it is still possible
to make qualitative and even quantitative, although impreciée, predictions
relative to experiments in the NORDA high-frequency scattering facility.
Given the many simplifying assumptions in the analysis presented here, it
is encouraging that the predicted rms temperature fluctuations in.Sect. VITI
are in rough order of magnitude agreement with Posey's oral statement [3]

that the measured values were of the order of 0.1 °C. Consequently,

50



it is a reasonable conjecture that the analysis in that Section may be

a useful guide as to the dependence of the turbulent field on the
externally controllable experimental parameters. In particular, one may
note the dependence on Q (to the 2/3-rds power) in Eq. (52b). The present
analysis suggests that the experimental configuration most recently
reported [3] is just on the borderline of displaying Wenzel's [5]
saturation phenomenon. To increase the strength of the turbulence one

can either increase the number of heating elements or the voltage

drop across the heating array.
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